首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   218445篇
  免费   30999篇
  国内免费   25466篇
电工技术   20183篇
技术理论   9篇
综合类   16884篇
化学工业   46456篇
金属工艺   11440篇
机械仪表   14004篇
建筑科学   9253篇
矿业工程   2594篇
能源动力   6561篇
轻工业   14311篇
水利工程   2581篇
石油天然气   4457篇
武器工业   2321篇
无线电   30877篇
一般工业技术   29617篇
冶金工业   4774篇
原子能技术   3467篇
自动化技术   55121篇
  2024年   535篇
  2023年   3474篇
  2022年   5742篇
  2021年   8043篇
  2020年   7644篇
  2019年   7128篇
  2018年   6675篇
  2017年   8972篇
  2016年   9825篇
  2015年   11343篇
  2014年   11417篇
  2013年   14952篇
  2012年   16548篇
  2011年   18730篇
  2010年   13725篇
  2009年   13740篇
  2008年   14710篇
  2007年   16519篇
  2006年   15533篇
  2005年   13295篇
  2004年   11288篇
  2003年   8971篇
  2002年   6817篇
  2001年   5189篇
  2000年   4130篇
  1999年   3432篇
  1998年   2837篇
  1997年   2260篇
  1996年   1965篇
  1995年   1778篇
  1994年   1539篇
  1993年   1164篇
  1992年   944篇
  1991年   781篇
  1990年   705篇
  1989年   511篇
  1988年   352篇
  1987年   223篇
  1986年   198篇
  1985年   249篇
  1984年   217篇
  1983年   166篇
  1982年   209篇
  1981年   106篇
  1980年   101篇
  1979年   29篇
  1978年   22篇
  1977年   30篇
  1976年   20篇
  1951年   19篇
排序方式: 共有10000条查询结果,搜索用时 31 毫秒
81.
《Ceramics International》2022,48(2):1451-1483
Metal/ceramic composites are in high demand in several industries because of their superior thermo-mechanical properties. Among various composite types, the interpenetrating phase composites (IPCs) with percolating metallic and ceramic phases offer manifold benefits, such as a good combination of strength, toughness, and stiffness, very good thermal properties, excellent wear resistance, as well as the flexibility of microstructure and processing route selection, etc. The fabrication of metal/ceramic IPCs typically involves two steps - i) processing of an open porous ceramic body, and ii) infiltration of metallic melt in the pores to fabricate the IPC. Although significant progress has been made in recent years for developing both porous ceramics and melt infiltration methods, to the best of the knowledge of the authors, no review article summarizing all the aspects of processing and properties of IPCs has been published till date. This review article is aimed at filling this gap. Starting with a brief introduction about the current status and applications of IPCs, the various processing routes for fabricating open porous ceramic preforms and melt infiltration techniques have been discussed. Subsequently, the data available for various important physical, mechanical, and thermal properties for IPCs have been critically analyzed to thoroughly understand their dependence on various structural and processing parameters. To compare the properties of IPCs with other relevant materials, seven different Ashby material property maps have been used, and the domains for IPCs have been created in them. For each map, the concept of material indices has been employed to critically discuss how IPCs perform in relation to other material classes for various optimum design conditions. Finally, a detailed future outlook for further research on IPCs has been provided.  相似文献   
82.
《Ceramics International》2022,48(6):7344-7361
Zirconium diboride (ZrB2) and silicon carbide (SiC) composites have long been of interest since it was observed that ZrB2 improved the thermal shock resistance of SiC. However, processing of these materials can be difficult due to high and different sintering temperatures and differences in the thermodynamic stability of each material. ZrB2–SiC composites have been processed in a variety of ways including hot-pressing, spark-plasma sintering, reactive melt infiltration, pack cementation, chemical vapor deposition, chemical vapor infiltration, stereolithography, direct ink writing, selective laser sintering, electron beam melting, and binder jet additive manufacturing. Each manufacturing method has its own pros and cons. This review serves to summarize more than 60 years of research and provide a coherent resource for the variety of methods and advancements in development of ZrB2–SiC composites.  相似文献   
83.
Edge Computing is one of the radically evolving systems through generations as it is able to effectively meet the data saving standards of consumers, providers and the workers. Requisition for Edge Computing based items have been increasing tremendously. Apart from the advantages it holds, there remain lots of objections and restrictions, which hinders it from accomplishing the need of consumers all around the world. Some of the limitations are constraints on computing and hardware, functions and accessibility, remote administration and connectivity. There is also a backlog in security due to its inability to create a trust between devices involved in encryption and decryption. This is because security of data greatly depends upon faster encryption and decryption in order to transfer it. In addition, its devices are considerably exposed to side channel attacks, including Power Analysis attacks that are capable of overturning the process. Constrained space and the ability of it is one of the most challenging tasks. To prevail over from this issue we are proposing a Cryptographic Lightweight Encryption Algorithm with Dimensionality Reduction in Edge Computing. The t-Distributed Stochastic Neighbor Embedding is one of the efficient dimensionality reduction technique that greatly decreases the size of the non-linear data. The three dimensional image data obtained from the system, which are connected with it, are dimensionally reduced, and then lightweight encryption algorithm is employed. Hence, the security backlog can be solved effectively using this method.  相似文献   
84.
《Ceramics International》2022,48(4):5154-5161
An investigation was made into the electrochemical, structural and biological properties of self-organized amorphous and anatase/rutile titanium dioxide (TiO2) nanotubes deposited on Ti–35Nb–4Zr alloy through anodization-induced surface modification. The surface of as-anodized and heat-treated TiO2 nanotubes was analyzed by field emission scanning electron microscopy (FE-SEM), revealing morphological parameters such as tube diameter, wall thickness and cross-sectional length. Glancing angle X-ray diffraction (GAXRD) was employed to identify the structural phases of titanium dioxide, while atomic force microscopy (AFM) was used to measure surface roughness associated with cell interaction properties. The electrochemical stability of TiO2 was examined by electrochemical impedance spectroscopy (EIS) and the results obtained were correlated with the microstructural characterization. The in vitro bioactivity of as-anodized and crystallized TiO2 nanotubes was also analyzed as a function of the presence of different TiO2 polymorphic phases. The results indicated that anatase TiO2 showed higher surface corrosion resistance and greater cell viability than amorphous TiO2, confirming that TiO2 nanotube crystallization plays an important role in the material's electrochemical behavior and biocompatibility.  相似文献   
85.
《Ceramics International》2022,48(7):9527-9533
In this work, a magnetodielectric coupling observed in barium titanate–cobalt ferrite composites synthesized using high-energy ball milling assisted via a thermal treatment is discussed. Vibrating sample magnetometry and dielectric spectroscopy showed that multiferroic composites possess both ferromagnetic and dielectric behaviors inherited from the parent ferromagnetic cobalt ferrite and ferroelectric barium titanate phases. The magnetocapacitance (up to 35%) recorded for x = 0.3, (1-x)BaTiO3–xCoFe2O4, can be attributed to the spin-dependent filtering mechanism. The composite with the aforementioned composition exhibited a homogeneous matrix–particle composite microstructure, which was achieved via high-energy ball milling during the mixing stage.  相似文献   
86.
《Ceramics International》2022,48(8):10592-10600
Zinc oxide is widely used in gas sensors, solar cells, and photocatalysts because of its wide bandgap and exciton binding energy of 60 meV in various metal oxides. To use ZnO as a gas sensor, it is necessary to synthesize it with surface defects and a large specific surface area. In this study, hydrothermal synthesis without surfactants was employed to obtain organic-additive-free ZnO. For morphology control, we varied the ratio of the hydroxide ion concentration to the zinc ion concentration. To confirm the growth mechanism of ZnO, we performed X-ray diffraction, scanning electron microscopy, and transmission electron microscopy analyses. Raman spectroscopy and photoluminescence measurements were performed to analyze the surface properties. The Brunauer–Emmett–Teller method and probe stations were used to measure the specific surface area and sensitivity of the gas sensor, respectively. The results confirmed that flower-shaped ZnO is the most suitable gas-sensing material.  相似文献   
87.
《Ceramics International》2022,48(9):11981-11987
Previous research have reported that B4C–TiB2 composites could be prepared by the reactive sintering of TiC–B powder mixtures. However, due to spontaneous oxidation of raw powders, using TiC–B powder mixtures with a B/TiC molar ratio of 6: 1 introduced an intermediate phase of C during the sintering process, which deteriorated the hardness of the composites. In this report, the effects of B excess on the phase composition, microstructure, and mechanical properties of B4C–TiB2 composites fabricated by reactive hot pressing TiC–B powder mixtures were investigated. XRD and Raman spectra confirmed that lattice expansion occurred in B-rich boron carbide and BxC–TiB2 (x > 4) composites were obtained. The increasing B content improved the hardness and fracture toughness but decreased the flexural strength of BxC–TiB2 (x > 4) composites. When the molar ratio of B/TiC increased from 6.6:1 to 7.8:1, the Vickers hardness and the fracture toughness of the composites were enhanced from 26.7 GPa and 4.53 MPa m1/2 to 30.4 GPa and 5.78 MPa m1/2, respectively. The improved hardness was attributed to the microstructural improvement, while the toughening mechanism was crack deflection, crack bridging and crack branching.  相似文献   
88.
《Ceramics International》2022,48(14):20158-20167
Vacuum induction melting is a potential process for the preparation of TiAl alloys with good homogeneity and low cost. But the crucial problem is a selection of high stability refractory. In this study, a BaZrO3/Y2O3 dual-phase refractory was prepared and its performance for melting TiAl alloys was studied and compared with that of a Y2O3 refractory. The results showed the dual-phase refractory consisted of BaZr1-xYxO3-δ and Y2O3(ZrO2), exhibited a thinner interaction layer (30 μm) than the Y2O3 refractory (90 μm) after melting the TiAl alloy. Although the TiAl alloys melted in the dual-phase and Y2O3 refractory exhibited similar oxygen contamination (<0.1 wt%), the alloy melted in the dual-phase refractory had smaller Y2O3 inclusion content and size than that in the Y2O3 refractory, indicating that the dual-phase refractory exhibited a better melting performance than the Y2O3 refractory. This study provides insights into the process of designing highly stable refractory for melting TiAl alloys.  相似文献   
89.
《Ceramics International》2022,48(17):24888-24897
In the furnace cycle test, the growth of oxide film leads to the propagation and coalescence of multiple cracks near the interface, which should be responsible for the spallation of thermal barrier coatings (TBCs). A TBC model with real interface morphology is created, and the near-interface large pore is retained. The purpose of this work is to clarify the mechanism of TBC spallation caused by successive initiation, propagation, and linkage of cracks near the interface during thermal cycle. The dynamic growth of thermally grown oxide (TGO) is carried out by applying a stress-free strain. The crack nucleation and arbitrary path propagation in YSZ and TGO are simulated by the extended finite element method (XFEM). The debonding along the YSZ/TGO/BC interface is evaluated using a surface-based cohesive behavior. The large-scale pore in YSZ near the interface can initiate a new crack. The ceramic crack can propagate to the YSZ/TGO interface, which will accelerate the interfacial damage and debonding. For the TGO/BC interface, the normal compressive stress and small shear stress at the valley hinder the further crack propagation. The growth of YSZ crack and the formation of through-TGO crack are the main causes of TBC delamination. The accelerated BC oxidation increases the lateral growth strain of TGO, which will promote crack propagation and coalescence. The optimization design proposed in this work can provide another option for developing TBC with high durability.  相似文献   
90.
This paper describes the creation of an environmentally conscious community group, the Great River Network, and the role that it has played in the remediation and restoration process as part of one of the Great Lakes environmental programs. Community engagement was initiated in the region as part of the Remedial Action Plan for the Area of Concern at Cornwall/Akwesasne/Massena within the Upper St. Lawrence River. The community group formalised as a network representing 50+ organisations in response to perceived inadequacies in the agency of the community to respond to new environmental concerns outside of the scope of the existing programs. As a grass-roots initiative, the Great River Network has successfully completed remediation and restoration actions of significant value to the environment. These include a series of river clean ups (>42 tonnes of garbage removed), fish habitat restoration, and addressing shoreline erosion issues. Success has been achieved through partnering with a range of organisations, including Indigenous, non-profit, governmental, Conservation Authorities, businesses and industry partners. The action-oriented approach showcases how remediation and restoration led by, and embedded in, the community can result in true revitalization. A simplified framework for adaptive management practices for remediation and restoration efforts that lead to revitalization, including knowledge translation, is proposed. This case study highlights the transformational opportunities that remediation and restoration initiatives can bring. In this instance, the process is intensely local and cooperative and lays the foundation for moving towards a collective impact approach for the region.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号